Improved CSG Rendering using Overlap Graph Subtraction Sequences

Nigel Stewart! Geoff Leach'
School of Computer Science and Information Technology
RMIT University
Melbourne, Australia

Abstract

The Sequenced Convex Subtraction (SCS) algorithm for Construc-
tive Solid Geometry (CSG) sequentially subtracts convex volumes
from the z-buffer. The performance of the algorithm is determined
by the length of the subtraction sequence used. View-independent
subtraction sequences are O(n®) in length. These can be reduced to
O(kn) if the maximum depth complexity k, which ranges between
1 and n, is known or can be determined.

We present an improvement to subtraction sequence generation
which uses object space overlap information to give O(n) length
sequences in the best case and (unchanged) O(n?) sequences in
the worst case. The approach is based on what we term an over-
lap graph. We also discuss a unifying approach combining over-
lap graph based processing with the Sequenced Convex Subtraction
(SCS) CSG rendering algorithm. Finally, we present experimental
results which show performance improvements, depending on the
spatial arrangements of objects.

CR Categories: 1.3.5 [Computer Graphics]: Geometric Algo-
rithms, Languages, and Systems 1.3.3 [Computer Graphics]: Dis-
play Algorithms 1.3.7 [Computer Graphics]: Visible Line/Surface
Algorithms

Keywords: CSG, rendering algorithm, graph algorithm

1 INTRODUCTION

The Sequenced Convex Subtraction (SCS) algorithm[Stewart et al.
2000; Stewart et al. 2002] is an image-space approach to CSG
rendering. The algorithm utilises an O(n) algorithm for intersec-
tion of convex objects and an O(n?) algorithm for subtraction of
convex objects[Stewart et al. 2002]. Previous image-space CSG
rendering algorithms[Epstein et al. 1989; Goldfeather et al. 1989;
Wiegand 1996] rely on multiple z-buffers, extended z-testing or z-
buffer copying. The SCS algorithm aims to maximise performance
by increased utilisation of high-performance polygon rasterisation,
which is typically a fast path, rather than z-buffer copying, which
is typically a slow path[Wiegand 1996; Stewart et al. 1998; Stewart
et al. 2000].

*e-mail: nigels@nigels.com
Te-mail: gl@cs.rmit.edu.au
*e-mail: Sabu.John@rmit.edu.au

Sabu John*
Department of Mechanical and Manufacturing Engineering
RMIT University
Melbourne, Australia

In this paper we present an approach which results in faster
subtraction of large numbers of convex objects from the z-buffer.
Object-space intersection detection (spatial overlap) is used as a
means of producing shorter subtraction sequences. In the best case
subtraction sequences of length O(n) can be determined based on
the spatial arrangement of objects — an improvement over the
O(n?) sequences which would otherwise be needed. In the worst
case the subtraction sequence length remains the same.

The overlap graph which stores spatial intersection information
and is the basis of our improved approach is introduced in Section
2. Properties of the overlap graph we use are discussed in Section
3, including methods for encoding subtraction sequences. In Sec-
tion 4 a complete algorithm is presented for encoding subtraction
sequences from overlap graphs. Experimental results and a perfor-
mance comparsion are presented in Section 5. Finally, concluding
remarks are given in Section 6.

2 OVERLAP GRAPH

The SCS algorithm requires a subtraction sequence for each sepa-
rate CSG product. Any CSG tree can be represented as a union of
products — termed sum-of-products[Goldfeather et al. 1989] form.
CSG tree normalisation is the process of converting a CSG tree to
sum-of-products form. CSG products consist only of intersections
and subtractions.

We use what we term an overlap graph to represent the spatial
relationship of the objects in a CSG product. Nodes in the graph
correspond to shapes or objects while edges in the graph indicate
spatial overlap (that is, spatial intersection) between objects. Nodes
and edges are removed from the graph as the graph is processed into
a subtraction sequence. Aspects of this processing are described in
Section 3.

Our approach does not require a perfect overlap graph. Extra
edges in the overlap graph are permissible but may result in longer
subtraction sequences and thereby degrade the performance of the
SCS CSG rendering algorithm. Extra edges (false positives) in the
overlap graph occur when overlap detection is based on bounding
volumes. We use bounding volumes to build the overlap graph.
More efficient approaches for intersection detection are available
but overlap graph construction is not the focus here.

2.1 Graph Theory Background

In this section we introduce graph theory terminology and notation
used in our work[Diestal 2000].

A graph G = (V,E) is a set of nodes V and a set of edges E.
Edges connect pairs of nodes in the graph. The order of a graph,
denoted |G| is the number of nodes in a graph. The number of edges
in a graph is denoted ||G||.

IfveV, ec E and v € g then the node v is an end of edge e,
edge eisincident on v, and e is an edge at node v. Two nodes X,y
are adjacent if xy is an edge of G. Two edges are adjacent if they
have an end in common. The degree of a node d(v) is the number

of edges incident at v. Nodes of degree zero are termed isolated.
Nodes of degree one are called leaves.

A path is a graph P = (V, E) linking two end nodes via interme-
diate nodes and edges. The degree of the end nodes in a path is 1
and the degree of the intermediate nodes is 2. The length of a path
is the number of edges. A cycleis a graph C = (V, E) connecting
the nodes of the cycle V into a loop along the edges E. The degree
of the nodes in a cycle is 2. The length of a cycle is the number of
nodes or edges. A graph containing a cycle is cyclic. A cyclic graph
consisted of only one cycle is called a ring. A graph containing no
cycles is acyclic.

A graph is connected if every pair of nodes is connected by a
path in G. Otherwise, the graph is disconnected. If U is a set of
nodes, G — U is obtained by deleting all the nodes in U NV and
their incident edges.

2.2 Implementation

Our overlap graph is implemented in C++ as an adjacency-list using
the standard library vector and map templated containers. Use of
a sparse representation is based on the assumption that there are
generally few edges at each node. Sparse graphs are more likely
to result in short subtraction sequences. We expect that real-world
applications typically result in sparse graphs.

The implementation uses a std::vector of std::maps, one map for
each node in the graph. Each map is a balanced tree of edges inci-
dent on a particular node. Each edge is stored at both end nodes.
The class interface supports edge addition and node removal. Node
degree and edge list queries are efficient.

Our own shape intersection testing routines have been used for
overlap graph initialisation. In principle one of the available col-
lision detection libraries[Cohen et al. 1995] could be used as an
alternative. Optimisation of this aspect was not pursued in this in-
vestigation due to our focus on per-frame performance. Overlap
graph construction is usually a once off pre-processing step.

3 OVERLAP GRAPH PROCESSING

The overlap graph contains information about the spatial relation-
ship of the objects in a CSG tree. This section presents several
properties of overlap graphs that can be used to construct subtrac-
tion sequences for the SCS CSG rendering algorithm.

The aim of overlap graph processing is to embed all necessary
sequences in a combined subtraction sequence. An optimal subtrac-
tion sequence is in front-to-back order, requiring a linear sequence
of subtraction steps to achieve the correct result. The focus of this
work is to utilise overlap information rather than sorting. The aim
is to embed every graph path in a subtraction sequence of minimal
length. Each path represents a potential sequence of subtractions
necessary for ensuring the correctly rendered result.

3.1 Intersected Objects

For a CSG product to be non-empty, all intersected objects in the
product must overlap all other intersected objects in the product. If
any pair of intersected objects in the product do not overlap then
the whole product is empty and no rendering is required.

Algorithm 1 Intersected Objects Check

empty « false
for all pairs of intersected objects: i and j do
if i and j are not overlapping then
empty <« true {CSG product is empty}
stop {No further processing required}

X-A Rendered Result

Figure 1: External Subtracted Object

3.2 External Subtracted Objects

Surfaces of subtracted objects in the CSG product must be inside all
intersected objects in the product to be visible. Subtracted objects
in the product not overlapping all intersected objects in the product
are external and can be omitted from the subtraction sequence.

In the example in Figure 1, a cylinder is subtracted from a rectan-
gular block. The cylinder and block do not overlap, so the cylinder
need not be subtracted. The resulting subtraction sequence for the
set of external nodes is empty. This process is analogous to view-
frustum culling — only subtracted objects overlapping particular
areas of interest need to proceed to subsequent processing steps.

Algorithm 2 External Subtracted Objects

for all subtracted objects: i do
for all intersected objects: j do
if i and j are not overlapping then
remove i from overlap graph {i is external and not visi-
ble}

3.3 Leaf Nodes

Intersected objects in the CSG product are not included in subtrac-
tion sequences. The previous two tests make use of the spatial over-
lap of intersected objects in the product. Intersected objects are re-
moved from the overlap graph at this stage since there is no further
use for this information.

Leaf nodes are those having a degree of one (connected by one
edge only) — and represent subtracted objects which only overlap
one other subtracted object in the overlap graph. Leaf node removal
can result in new leaf nodes, a cyclic graph, isolated nodes, or an
empty graph. A set of removed leaf nodes is referred to as a trim.
The overlap graph is trimmed until no further trimming is possible,
resulting in a set of trims: T, T,,, ..., Tn. Repeated trimming results
in either a cyclic graph, isolated nodes, or an empty graph.

In the example in Figure 2, three cylinders are subtracted from a
rectangular block. The two outer cylinders are trimmed as leaves in
the first pass.

Subtraction sequence encoding is based on the observation that
necessary sequences of subtraction proceed from the outer trims

X-A-B-C

Rendered Result Overlap Graph

Figure 2: Leaf Nodes

Algorithm 3 Leaf Nodes
pass « 1
while leaf nodes exist do
Tpass + |eaves
remove Tpass from overlap graph
pass < pass+ 1

towards the inner trims and then back out towards the outer trims.
Denoting Scyc“c(chc”c) as the subtraction sequence for the graph

resulting from leaf trimming, the subtraction sequence §, . is:

T1, oy T Syatic(Geyatic) - T Tos T
In the example in Figure 2, T, = A,C and Scyclic = B. The com-

bined subtraction sequence is: ACBAC. Each leaf node appears in
the subtraction sequence twice, resulting in O(n) length subtraction
sequences for completely acyclic graphs.

3.4 Ring Graphs

Repeated leaf node trimming results in either a cyclic graph or an
empty graph. Cyclic graphs forming a ring are identified and en-
coded individually. In the example in Figure 3, four cylinders sub-
tracted from a rectangular block form a ring in the overlap graph.

A ring is formed by a set of nodes with degree two connected
with edges that form a loop. The following algorithm is used to
find a ring in an overlap graph:

Algorithm 4 Ring Graphs

for all nodes of degree two: i do
j « overlapping node of i
Ry i
Ry +]
k1
while degree of R, is two do
next < unvisited overlapping node of R,
if next is R, then
remove Ry, .., R, from overlap graph
Gring = RO""Rk
stop
k+—k+1
R, < next

Subtraction sequences for ring graphs need to include all clock-
wise and anti-clockwise traversals of the ring. All traversals in one
direction are encoded in the sequence RyR;...Rn\RyR;...R,_;, and
in the other direction Ry...R;RyRn...R;. The length of each of these
sequences is 2n— 1. Combining the sequences in each direction,
the length of ring subtraction sequences is 4n— 2.

Graph nodes processed as rings appear in the subtraction se-
quence up to 4 times, resulting in subtraction sequences of O(n)

©

Rendered Result Overlap Graph

X-A-B-C-D

Figure 3: Ring Graph

" Y

X-A-B-C-D-E-F Rendered Result Overlap Graph

Figure 4: Disconnected Graphs

3.5 Disconnected Graphs

An overlap graph may be disconnected, that is, composed of sepa-
rate connected components. Each connected component is treated
individually when converted to a subtraction sequence. There is
no need to embed sequences between disconnected portions of the
overlap graph.

Individual connected components can be identified by starting
from any node and traversing all the known edges until no new
nodes can be found. This can be implemented as either a depth-first
or breadth-first traversal.

Each component can be encoded separately and combined into
a concatenated subtraction sequence without concern for the order.
Separate connected components in the overlap graph have no inter-
dependence. Figure 4 illustrates six subtracted objects forming a
disconnected graph with two connected components.

Isolated overlap graph nodes (those with a degree of zero) can be
treated as trivial connected components. The subtraction sequence
for an isolated node is simply the node itself — the object need only
be subtracted once to ensure the correctly rendered result.

3.6 Cyclic Graphs

Cyclic graphs that are not rings are encoded as either O(n?) view-
independent or O(kn) view-dependent ‘image-space’ subtraction
sequences. These encoding algorithms have been described pre-
viously[Stewart et al. 2000; Erra et al. 2001; Stewart et al. 2002].

In the example in Figure 5, the four subtracted cylinders are
overlapping all the other cylinders. None of the nodes are exter-
nal to the block or are leaf nodes. Also, the cylinders do not form
a ring. In this case either a O(n?) view-independent or a O(kn)
view-dependent subtraction sequence must be used.

L

X-A-B-C-D Rendered Result Overlap Graph

Figure 5: Cyclic Graph

4 COMPLETE ALGORITHM
4.1 Overview of SCS

The SCS CSG rendering algorithm operates in four general phases:

e CSG tree normalisation[Goldfeather et al. 1989]
e Overlap graph construction
e Subtraction sequence encoding

e Rendering[Stewart et al. 2002]

Typically, the last two steps are performed for every frame. If
the viewing direction does not change between frames, then only
the rendering phase needs to be repeated. This section focuses on
the third phase: subtraction sequence encoding. This is where the
improvements for CSG rendering from using object-space overlap
information arise.

4.2 SCS Overlap Graph Encoding Algorithm

Algorithm 5 combines the methods in Section 3 to produce a sub-
traction sequence S given an overlap graph G and the viewing di-
rection.

Algorithm 5 Overlap Graph Subtraction Sequence Encoding
{Empty intersection}
for all pairs of intersected objects: i and j do
if i and j are not overlapping then
S+¢
stop

{External subtracted objects}
for all subtracted objects: i do
for all intersected objects: j do
if i and j are not overlapping then
remove i from overlap graph
{Leaf nodes}
for all leaf trims: T; do
remove T; from overlap graph
{Ring graphs}
for all ring sub-graphs: G, do
remove G, from overlap graph
Snner A Snner : a'ing(Gring)
{Cyclic connected graphs}
for all connected cyclic graph: chclic
remove chclic from overlap graph
Siner < Sner * Scyclic(chclic)
{Combined subtraction sequence}
ST T o Tn'Sppeg T e Ty

do

4.3 Example

Subtraction sequence encoding is illustrated in Figure 6. Nine sub-
tracted objects are tested for mutual intersection and form the over-
lap graph in Figure 6(a). Intersected nodes are not shown — empty
intersection and external subtracted object tests have already been
applied. The result of the first leaf trimming pass is illustrated in
Figure 6(b). Four leaf nodes are removed in total, which form the

(a) Initial overlap graph

(b) First leaf trimming pass

(c) Second leaf trimming pass

Figure 6: Overlap Graph Sequence Encoding Example

prefix and postfix of the combined subtraction sequence. The sec-
ond trimming pass removes an additional leaf node as illustrated in
Figure 6(c). Now that no further leaves exist in the overlap graph,
cyclic connected graphs are considered. The ring graph of size three
is encoded as the first part of the inner subtraction sequence. Fi-
nally, the remaining (isolated) node is added to the inner subtrac-
tion sequence. In this case the length of the combined subtraction
sequence is O(n) and no depth complexity sampling is necessary.

The combined sequence is formed by surrounding the encoded
cyclic graphs with the leaf trims:

Tl) T2 : Sring:J(Gring)) Ssolated(GisoIated) : T2 ’ Tl

5 EXPERIMENTAL RESULTS

Results for two experiments are presented in this section. The
length of subtraction sequences for image-space and overlap graph
encoding algorithms are compared by using a procedural swiss
cheese CSG model. In the second experiment, a 3-axis milling sim-
ulation is used to examine the real-world performance of subtrac-
tion sequence encoding and rendering.

Our previous CSG rendering implementation[Stewart et al.
2002] has been extended to include overlap graph intersection test-
ing and subtraction sequence generation. These are implemented
as a C++[Stroustrup 1997] class library using the standard C++
template library[Josuttis 1999], OpenGL[Woo et al. 1999; Shreiner
1999] and GLUT[Kilgard 1996]. The experimental platform is
a 1.6GHz Intel Pentium 4, 256MB RAM, RedHat Linux 7.3 and
NVIDIA GeForce4 Ti 4200 graphics hardware. The implementa-
tion is also portable to Windows and other UNIX platforms. Exper-
iments were conducted using a 800x600 pixel OpenGL window, 24
bit z-buffer and 8-bit stencil buffer.

Overlap graph construction and performance are not the focus
of this work. Our implementation using spatial subdivision was
sufficient for the purpose of the experiments reported here.

sequence length

sequence length

improvement factor

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

(a) n=50

(b) n=100 (c) n=200

Figure 7: Procedural Swiss Cheese

0 50 100 150 200
number of holes

(a) Image-space subtraction sequences

0 50 100 150 200
number of holes

(b) Overlap graph subtraction sequences

35 T T
improvement factor —+—
3 -
25
2 -
15
l -
0.5 i
0 1 1 1
0 50 100 150 200

number of holes

(c) Overlap Graph improvement factor

Figure 8: Swiss Cheese Subtraction Sequences

5.1 Swiss Cheese Sequence Length

The swiss cheese CSG model is generated procedurally. The user
supplies a specification of the number and maximum size of holes,
and a seed for the random number generator. In this experiment,
the maximum size of holes and random number sequence are fixed,
and the number of holes varied between 10 and 200. The model is
illustrated in Figure 7 with 50, 100 and 200 holes.

Table 1 lists the minimum, maximum and average subtraction se-
quence lengths for swiss cheese with up to two hundred holes. The
sequence lengths were obtained by observing one thousand ran-
dom viewing directions. Image-space subtraction sequence lengths
are plotted in Figure 8(a), and overlap graph object-space sequence
lengths are plotted in Figure 8(b). The improvement of the overlap
graph object-space sequence over the image-space sequence for the
mean sequence length is plotted as an improvement factor in Figure
8(c).

These results indicate that object-space overlap graph subtrac-
tion sequences are consistently shorter. The minimum, maximum
and average case characteristics are similar. In Figure 8(c) for small
n, sequence length improvement factors of between two and three
are observed. As napproaches 80, the relative advantage drops dra-
matically and approaches an asymptote at unity as n increases. This
reflects the fact that as the number of holes increases the overlap
graph becomes more dense and cyclic and the opportunity for leaf
node pruning diminishes. Overlap graph subtraction sequences will
never be longer, since in the worst case the image-space encoding
algorithm is used.

To summarise, the swiss cheese experiment confirms the advan-
tage of overlap graph subtraction sequence encoding with substan-
tially shorter sequences possible for sparse overlap graphs.

n Image-space sequence || Overlap graph sequence
min [max | mean min | max mean
20 58 115 78.3 30 30 30.0

40 157 391 252.4 83 143 103.0
60 355 709 | 4629 164 | 301 208.3
80 554 | 1107 759.6 349 749 505.6
100 793 | 1684 | 1143.0 628 | 1212 867.1
120 || 1072 | 2024 | 1468.4 876 | 1520 | 1159.7
140 || 1530 | 2642 | 1993.4 || 1351 | 2311 | 17379
160 || 1750 | 3340 | 2476.2 || 1570 | 2970 | 2196.9
180 || 2328 | 4118 | 3068.5 || 2146 | 3776 | 2816.7
200 || 2986 | 4976 | 3777.0 || 2788 | 4628 | 3517.2

Table 1: Swiss Cheese sequence length

(2) n=50 (b) =100

(c) n=200

Figure 9: Simulated 3-Axis Drilling

5.2 3-Axis Drilling Timing Results

This experiment considers a simulated 3-axis drilling scenario.
User specified parameters for the number and maximum size of
holes are used to randomly generate drilled holes of varied radius
and position. The model is illustrated in Figure 9 with 50, 100 and
200 holes.

This experiment focuses on time rather than sequence length and
examines the processing overhead of object-space overlap graph se-
quence encoding. Table 2 lists the encoding time and total time for
3-axis drilling models with up to two hundred holes. One thousand
random viewing directions were sampled for image-space based
and overlap graph based sequence encoding methods. Image-space
rendering times are plotted in Figure 10(a), and overlap graph ren-
dering times are plotted in Figure 10(b). The relative performance
of overlap graph CSG rendering is plotted as a speed-up factor in
Figure 10(c). The proportion of CPU time spent encoding subtrac-
tion sequences is plotted as a percentage in Figure 11.

For n up to 40 all nodes are processed in leaf trimming resulting
in no need for depth complexity sampling. Overlap graph sequence
encoding is particularly advantageous in these cases, resulting in
overall speedups of between three and four. As drill holes start
forming cyclic clusters for 60 < n < 90 execution time for overlap-
graph encoding increases in both absolute and relative terms. For
n > 100 overlap graph encoding time decreases as the model be-
comes increasingly dense and cyclic. As the opportunity for leaf
trimming and ring finding diminish, the overall performance of both
approaches converge.

Image-space Overlap Graph
n encode | render | total encode | render | total
20 14.4 14.1 28.5 0.3 7.4 7.6
40 15.9 37.9 53.8 0.7 15.7 16.4
60 17.3 70.0 87.3 14.8 28.3 43.0
80 18.7 117.1 | 135.8 70.1 574 | 127.4

100 20.3 | 166.9 | 187.3 85.8 83.9 | 169.7
120 21.6 | 2458 | 267.4 76.5 | 154.2 | 230.7
140 23.3 | 310.1 | 3333 55.1 | 2329 | 288.0
160 25.0 | 392.6 | 417.6 46.4 | 323.0 | 369.3
180 26.1 | 474.8 | 500.9 37.8 | 457.6 | 4954
200 27.6 | 571.9 | 599.5 42.2 | 554.1 | 596.3

Table 2: Three-axis Timing Results (msec)

sec/frame

sec/frame

speedup factor

0.6 T T T T T T T T T B
encode ——-7

05 render %R

- tmé'{'fi\%”
o
04 'X,«,')(1
,x’}x
03 ¥ X _
*x.X
Froel
02+ ol 1
LE
0.1 B .~;§:;;§§/ -
- §,*::§§?“§/
0 e I I
0 20 40 60 80 100 120 140 160 180 200
number of holes
(a) Image-space encoding and total time (sec)

06 T T T T T T T T T 7
encode ———-
render ---x-<-.7

05 total ':,')éf;'x T

x

0.4 K B

03

0.2

0.1

0 R T =
0 20 40 60 80 100 120 140 160 180 200
number of holes
(b) Overlap Graph encoding and total time (sec)

5 T T T T T T T T T

speedup factor —+—

4 +

3 -

2 -

l -

0 1 1 1 1 1 1 1 1 1

0 20

40 60 80 100 120 140 160 180
number of holes

(c) Overlap Graph speedup factor

Figure 10: Three-axis Timing Results

200

70
X ‘ ‘overlab grapH encoding L
60 F image-space encoding ---x--- |

50 -
40 +

30

CPU percentage (%)

20

10 |

0 20 40 60 80 100 120 140 160 180 200
number of holes

Figure 11: Three-axis Relative Encoding Time

For overlap graph sequence encoding, the fraction of time spent
encoding the subtraction sequence peaks at nearly 60%, but still
results in an overall speedup. In these experiments, the per-frame
overlap graph encoding time is always more than offset by the per-
formance benefit of shorter subtraction sequences. Stencil buffer
copying related to depth complexity sampling has been observed
to be a bottleneck at higher resolutions than 800x600. The size at
which stencil buffer copying becomes the bottleneck depends on
the relative rasterisation and buffer copying performance of a par-
ticular platform.

To summarise, the 3-axis drilling experiment demonstrates an
overall per-frame speedup, despite some extra time spent encoding
overlap graph subtraction sequences. Substantially higher frame
rates are possible for sparse overlap graphs.

6 CONCLUSION

Object-space overlap graph techniques can be beneficial for de-
creasing the length of SCS subtraction sequences. In the best case,
O(n) subtraction sequences can be determined. In the worst case,
O(kn) subtraction sequences are still necessary. CSG trees com-
posed of relatively sparse and evenly distributed objects especially
benefit from this approach, while dense or clustered CSG trees may
not.

Overlap graph sequence encoding adds an additional step to the
SCS algorithm that often results in improved overall performance.
Speed-up factors of up to three have been observed experimentally.

6.1 Future work

There is scope for extending these techniques to cyclic graph en-
coding. Graphs presenting relatively few opportunities for leaf node
trimming could be approached by either grouping nodes or by con-
sidering further object-space information about adjacencies such as
location and orientation.

Object-space collision algorithms such as I-COLLIDE[Cohen
et al. 1995] could be combined with the SCS CSG rendering al-
gorithm for dynamic and interactive CSG trees. Such models could
be dynamic in terms of the position and shape of objects, or the
arrangement of objects in the CSG tree.

Use of the stencil buffer for depth complexity sampling is a po-
tential bottleneck for graphs consisting of many cyclic clusters. For
each disconnected graph the stencil buffer is read into main mem-
ory for analysis. Alternative algorithms may need investigation.

6.2 Acknowledgements

This work was supported in part by the Co-Operative Research
Center for Intelligent Manufacturing Systems & Technologies. This
research arose from the C-5 collaborative research project involving
ANCA Pty. Ltd., RMIT University and the CRC for IMST.

References

COHEN, J., LIN, M., MANOCHA, D., AND PONAMGI, K. 1995.
I-COLLIDE: An interactive and exact collision detection sys-
tem for large-scaled environments. Proceedings of ACM Int. 3D
Graphics Conference, 189-196.

DIESTAL, R. 2000. Graph Theory. Sprinter-Verlag.

EPSTEIN, D., JANSEN, F., AND ROSSIGNAC, J. 1989. Z-buffer
rendering from CSG: The trickle algorithm. IBM Research Re-
port RC 15182 (Nov).

ERRA, R., LYGEROS, N., AND STEWART, N. 2001. On minimal
strings containing the elements of S, by decimation. Discrete
Mathematics & Theoretical Computer Science AA, 165-176.

GOLDFEATHER, J., HULTQUIST, J., AND FUCHS, H. 1986. Fast
constructive solid geometry in the pixel-powers graphics system.
In Computer Graphics (Proceedings of ACM SSGGRAPH 86),
vol. 20(4), ACM, 107-116.

GOLDFEATHER, J., MOLNAR, S., TURK, G., AND FUCHS, H.
1989. Near real-time CSG rendering using tree normalization
and geometric pruning. IEEE CG&A 9, 3 (May), 20-28.

JosuTTis, N. M. 1999. The C++ Sandard Library. Addison
Wesley.

KILGARD, M. J. 1996. The OpenGL Utility Toolkit (GLUT) Pro-
gramming Interface.

LOMBARDO, J.-C., CANI, M.-P., AND NEYRET, F. 1999. Real-
time collision detection for virtual surgery. Proceedings of Com-
puter Animation ' 99, 82-90.

SHREINER, D. 1999. OpenGL Reference Manual, 3rd ed. Addison
Wesley.

STEWART, N., LEACH, G., AND JOHN, S. 1998. An improved Z-
buffer CSG rendering algorithm. 1998 Eurographics/Sggraph
Workshop on Graphics Hardware (Aug), 25-30.

STEWART, N., LEACH, G., AND JOHN, S. 2000. A Z-buffer CSG
rendering algorithm for convex objects. The 8-th International
Conference in Central Europe on Computer Graphics, Visualisa-
tion and Interactive Digital Media ' 2000 - WSCG 2000 Il (Feb),
369-372.

STEWART, N., LEACH, G., AND JOHN, S. 2002. Linear-time
CSG rendering of intersected convex objects. The 10-th Inter-
national Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision’ 2002 - WSCG 2002 11 (Feb),
437-444.

STROUSTRUP, B. 1997. The C++ Programming Language, 3rd ed.
Addison Wesley.

WIEGAND, T. F. 1996. Interactive rendering of CSG models. Com-
puter Graphics Forum 15, 4 (Oct), 249-261.

Woo0, M., NADER, J., DAvVIS, T., AND SHREINER, D. 1999.
OpenGL Programming Guide, 3rd ed. Addison Wesley.

